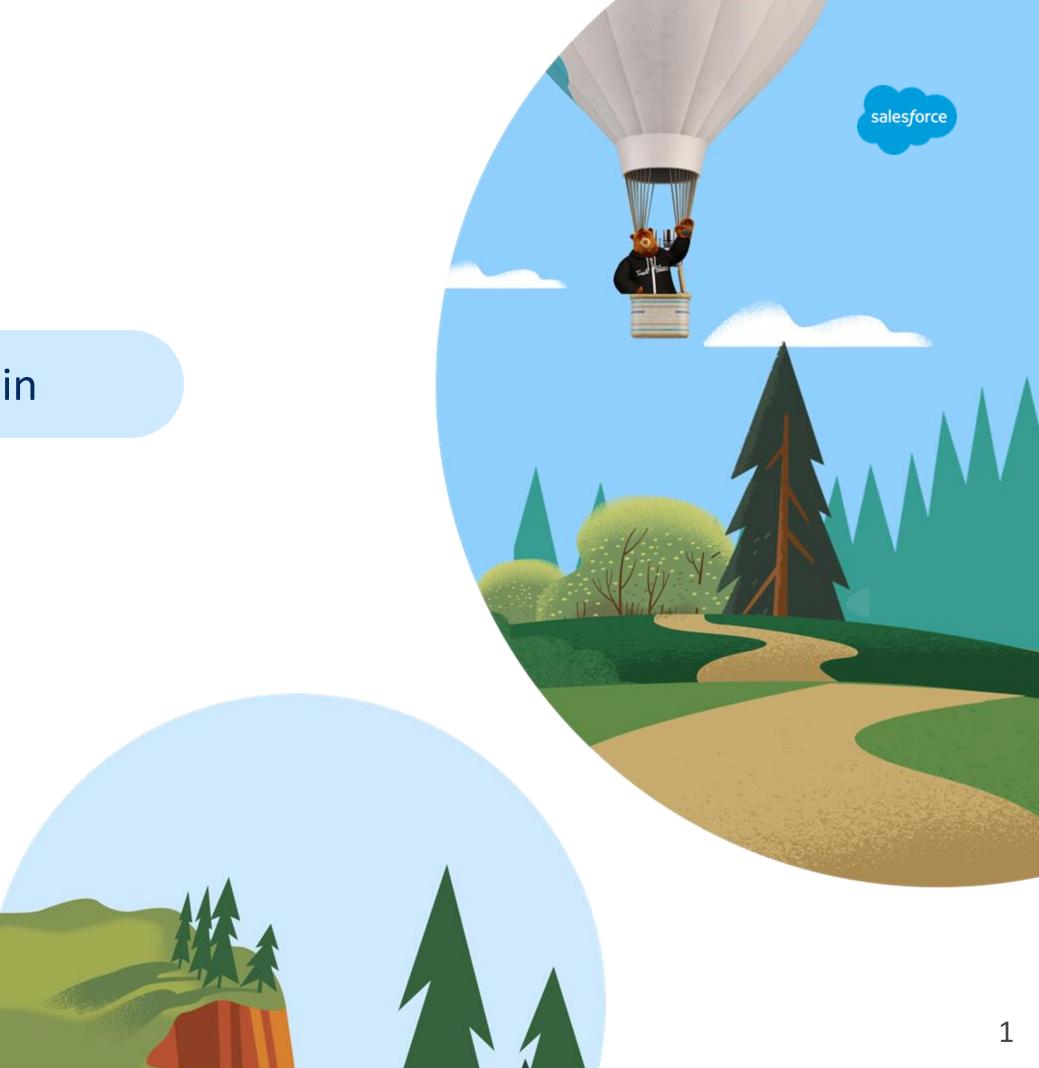
Agenda

Evaluation and Benchmark

Parametric Knowledge Adaptation ~60min

Semi-Parametric Knowledge Adaptation

Summary, Discussion, QAs



Adaptation - Overview

Model Recipe

+

Data Recipe

Training Recipe

Method

Loss, mask, algorithm

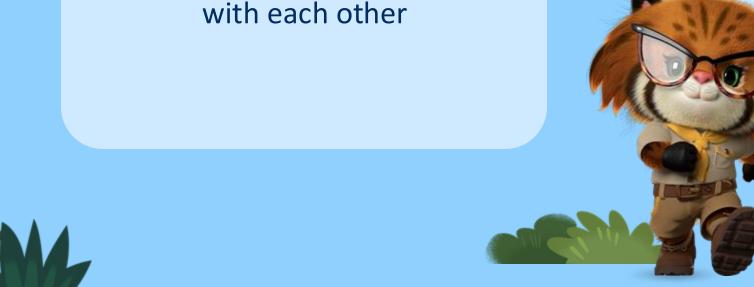
Workflow

How methods are connected with each other

How to construct better data

Quantity (Scale)

How to synthesize



Adaptation - Overview

Training Recipe

Data Recipe:

e.g., Supervised data is expensive, how to synthesize more data?

Model Recipe:

e.g., **Hyper-parameters**: What are the important hyper-parameters?

e.g., **Training Workflow**: How to connect with other methods?

Seed Data

Data Acquisition:

e.g., crawling, quality, quantity, filtering...

Data Mixture:

e.g., in-domain, general-domain, ...

Data Budget:

e.g., instruction following ~ 1 million; preference learning ~ 1 million (often overlapping with instruction following prompt); reinforcement learning ~ 10-100 thousand



Continual Pre-training (CPT)

CPT - Role

Knowledge Transfer

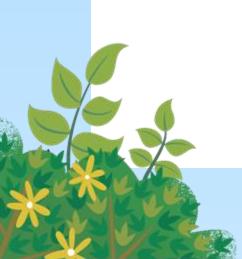
Improves on new knowledge:

CPT is typically used to inject new knowledge/capability (e.g., long-context adaptation) to the base model and to provide good initialization to the subsequent stages

Prevent Forgetting

Reinforce similar problems:

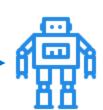
CPT involves large amount of unsupervised data and could easily cause *catastrophic* forgetting to the base model



CPT – Example Workflow

Seed Data (unsupervised)

Next Token Prediction* (self-supervised)



*Potentially some modifications (e.g., position embedding modification in long-context adaptation)

5751, 18463, 527,

1057, 1866, 13,

5810, 374, 264,

1160, 315, 1057,

8717, 323, 1618,

596, 1268, 584,

1304, 3300, 627,

11, 279, 11040,

15098, 7528, 11,

10409, 449, 832,

1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1,

29218, 23395, 323, 1, 1, 1, 1, 1, 1,

CPT – Example Data

Long Text (e.g. website, books)

No Special Masking

text ⇒ string · lengths	<pre>input_ids</pre>	attention_mask
22↔4.72k 73%	802⇔1.6k 25.4%	802⇔1.6k 25.4%
<pre>< begin_of_text >Many or all of the products featured here are from our partners who compensate us. This influences which products we write about and where and how the product appears on a page. However, this does not influence our evaluations. Our opinions are our own. Here is a list of our</pre>	[128000, 8607, 477, 682, 315, 279, 3956, 15109, 1618, 527, 505, 1057, 8717, 889, 46794, 603, 13,	[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
partners and here's how we make money. For many shoppers, the retail experience has become increasingly digital, filled with one-click purchasing and next-day shipping. But there are	1115, 34453, 902, 3956, 584, 3350, 922, 323, 1405, 323, 1268, 279,	1, 1,
still those among us who love the thrill of wandering between shops and enjoying an impromptu try-on session with friends.	2027, 8111, 389, 264, 2199, 13, 4452, 11, 420,	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
If you're a regular at Simon mall properties, the \$0-annual fee Simon Credit Card from Cardless is	1587, 539, 10383, 1057, 56181, 13,	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

Simon® American Express® credit card from Cardless. 2520, 1690, 49835, 1, 1, 1, 1, 1, 1,

1. It earns 5% cash back at all Simon properties in 3217, 706, 3719,

worth a look. Its rewards outpace most general-

purpose cards for mall-centered buys, and it boasts

flexibility that store-specific cards often can't

That said, the card comes with a few caveats you

rewards. Here are five things to know about the

Cardholders earn 5% cash back on all in-person

transactions within Simon's nearly 200 U.S. Simon

should be aware of to make the most of your

» MORE: What is Cardless?

match.

CPT – Key Considerations

Training Recipe

Model Recipe:

Hyper-parameters: What are the important hyper-parameters?

Training Workflow: how to connect CPT with other methods (e.g., IT, SPL)

Seed Data

Data Source: Where to get the data?

Data Mixture: What should be included to the

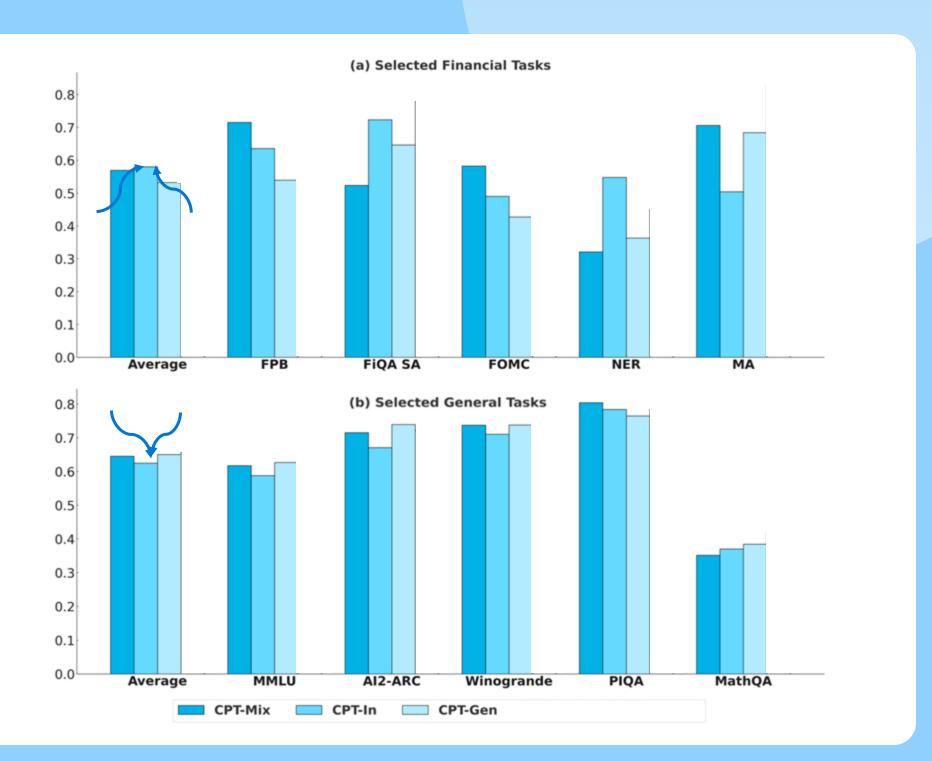
CPT data?

Data Budget: How much data we need?

Catastrophic Forgetting (Finance-LLM as an example)

In-domain Data alone → forgetting on general knowledge
(Knowledge forgetting)

Demystifying Domain-adaptive Post-training for Financial LLMs, Ke et al., 2025

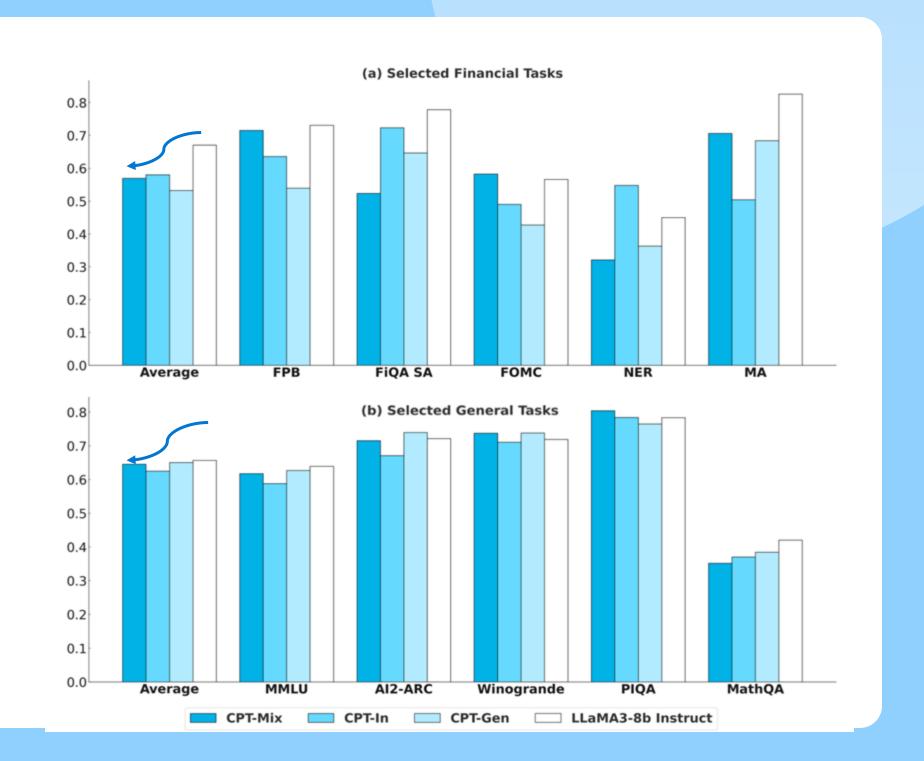


Catastrophic Forgetting (Finance-LLM as an example)

CPT alone →
forgetting on general capabilities
 (Capabilities forgetting)

base model = instruction-tuned model

Demystifying Domain-adaptive Post-training for Financial LLMs, Ke et al., 2025



We find that even small amounts of replay (1% of the general domain data) mitigate forgetting

Demystifying Domain-adaptive Post-training for Financial LLMs

Zixuan Ke, Yifei Ming, Xuan-Phi Nguy

Salesforce AI {zixuan.ke, yifei.ming, xnguyen, c

Project Page: https://github.com

Datasets: https://huggingface.co

Simple and Scalable Strategies to Continually Pre-train Large Language Models

Adam Ibrahim*†®
Benjamin Thérien*†®
Kshitij Gupta*†®
Mats L. Richter †®
Quentin Anthony 🌣†®
Timothée Lesort †®
Eugene Belilovsky ‡®
Irina Rish †®

Fine-tuned Language Models are Continual Learners

Thomas Scialom^{1*} Tuhin Chakrabarty^{2*} Smaranda Muresan ²
¹Meta AI

²Department of Computer Science, Columbia University

tscialom@fb.com, tuhin.chakr@cs.columbia.edu, smara@cs.columbia.edu

Learn New Knowledge and Mitigate Knowledge Forgetting – Data

Data source for new domain:

Web scrapers (often the largest proportion of data): e.g., Internet

User-provided content (often smaller proportion, but higher-quality): e.g.,. Wikipedia, arXiv,

Open Publishers (often smaller proportion, but higher-quality): e.g., PubMed, Semantic Scholar, Text book

Data source to prevent forgetting (small amount of replay):

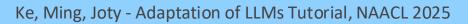
Human Verifier Text (small but high-quality): e.g., general supervised tasks

Learn New knowledge and Mitigate Knowledge Forgetting – Data

General Domain data + In-domain data

Capability	Domain	CPT Dataset	Size	Reference
Concept	General	NaturalInstrution	100,000	Mishra et al. (2022)
		PromptSource	100,000	Bach et al. (2022)
		Math	29,837	Amini et al. (2019b)
		Aqua	97,500	Ling et al. (2017)
		CREAK	10,200	Onoe et al. (2021)
		ESNLI	549,367	Camburu et al. (2018)
		QASC	8,130	Khot et al. (2020)
		SODA	1,190,000	Kim et al. (2022)
		StrategyQA	2,290	Geva et al. (2021)
		UnifiedSKG	779,000	Xie et al. (2022)
		GSM8K	7,470	Cobbe et al. (2021)
		ApexInstr	1,470,000	Huang et al. (2024b)
		DeepmindMath	379,000	Saxton et al. (2019)
		DialogueStudio	1,070,000	Zhang et al. (2023)
	Finance	Fineweb-Fin	4,380,000	-
		Book-Fin	4,500	-
Total			10,177,294	

Demystifying Domain-adaptive Post-training for Financial LLMs, Ke et al., 2025



Learn New knowledge and Mitigate Capabilities Forgetting – Model

Replay data only addresses the domain knowledge forgetting, but it does not address the capabilities (e.g., instruction-following abilities)

One way is to jointly train CPT and IT to avoid the capabilities forgetting

- Mitigate forgetting
- Encourage transfer (concept learned from CPT naturally shared across tasks)

Demystifying Domain-adaptive Post-training for Financial LLMs

Zixuan Ke, Yifei Ming, Xuan-Phi Nguyen, Caiming Xiong and Shafiq Joty Salesforce AI Research

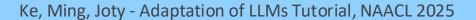
{zixuan.ke,yifei.ming,xnguyen,cxiong,sjoty}@salesforce.com

Project Page: https://github.com/SalesforceAIResearch/FinDAP

Datasets: https://huggingface.co/datasets/Salesforce/FinEval

* Another way could be model merging

A SURVEY ON POST-TRAINING OF LARGE LANGUAGE MODELS, Tie et al., 2025



Other Tips: Learning Rate, Data Curriculum

Final Recipe for Llama-Fin

-		
Continual Pr	re-training (CPT) and Instruction Tuning (IT)	
Data	50% CPT, 50% IT	
Curriculum	Group 1	CPT: 50% Domain-specific Text (Web and book), 50% General text (verfiable text)
1		IT: 20% Domain-specific tasks, 80% General tasks
1	Group 2	CPT: Group 1 data + domain-specific books
·	/	IT: Group1 + Exercises extracted from books
Stone		Group 1: 3.84B tokens; Group 2: 1.66B tokens
Steps		(8,000 context length, 16 A100)
Model	Intialization	Llama3-8b-instruct
	Attention	CPT: full attention with cross-docuemnt attention masking
		IT: full attention with instruction mask-out and cross-docuemnt attention masking
Optim.		AdamW (weight decay = 0.1, β_1 =0.9, β_2 =0.95)
	LR	Group 1: 5e-6 with 10% warmup; Group 2: 5e-6 with 50% warmup
	Batch size	128K tokens
Stop Cri.	Loss of development set stops decreasing (≈ 1 epoch)	

Demystifying Domain-adaptive Post-training for Financial LLMs, Ke et al., 2025

Other Tips: Learning Rate, Data Curriculum

	Continued Long-context Training			
Data	30% code repos, 30% books, 3% textbooks, 37% ShortMix			
	ShortMix:	27% FineWeb-Edu, 27% FineWeb, 11% Wikipedia, 11% StackExchange, 8% Tulu-v2, 8% OpenWebMath, 8% ArXiv		
Length	Stage 1 (64K):	Code repos, books, and textbooks at length 64K		
Curriculum	Stage 2 (512K):	Code repos: 50% at length 512K, 50% at length 64K Books: 17% at length 512K, 83% at length 64K Textbooks at length 512K		
Steps	Stage 1: 20B toke	ens (2.2K H100 hours), Stage 2: 20B tokens (12.2K H100 hours)		
Model	Initialization: RoPE: Attention:	Llama-3-8B-Instruct (original RoPE base freq. 5×10^5) Stage 1: 8×10^6 , Stage 2: 1.28×10^8 Full attention with cross-document attention masking		
Optim.	AdamW (weight LR: Batch size:	decay = 0.1, β_1 = 0.9, β_2 = 0.95) 1e-5 with 10% warmup and cosine decay to $1e-6$, each stage 4M tokens for stage 1, $8M$ tokens for stage 2		

How to Train Long-Context Language Models (Effectively), Gao et al., 2025

Other Tips: Learning Rate, Data Curriculum

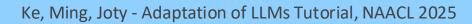
Rules of thumb for continual pre-training

Caveat—The following guidelines are written to the best of our current knowledge.

Learning rate schedule:

- If the learning rate was cosine-decayed from a large value η_{max} to a small value η_{min} during pre-training on the initial dataset, the following guidelines can help to continually pre-train your model:
 - Re-warming and re-decaying the learning rate from $\mathcal{O}(\eta_{max})$ to $\mathcal{O}(\eta_{min})$ improves adaptation to a new dataset, e.g. compared to continuing from small learning rates $\mathcal{O}(\eta_{min})$.
 - Decreasing the schedule's maximum learning rate can help reduce forgetting, whereas increasing it can improve adaptation.
- Infinite LR schedules are promising alternatives to cosine decay schedules. They transition
 into a high constant learning rate across tasks, helping prevent optimization-related forgetting
 by avoiding re-warming the LR between tasks. They also avoid committing to a specific
 budget of tokens as a final exponential decay can be used to train the model to convergence
 at any point during training.

Simple and Scalable Strategies to Continually Pre-train Large Language Models, Ibrahim et al., 2024



Other Tips: Learning Rate, Data Curriculum

Recipe

- Start with a data distribution that is similar to the pretraining set but places larger weight on high quality sources before transitioning to a second distribution that incorporates QA data and upweights sources in areas of model weakness.
- The learning rate schedule should start from η_{min} of the pretrained model and decay with cosine annealing to $\frac{\eta_{min}}{100}$.
- The switch between data distribution should occur at $\frac{\eta_{max}}{5}$ in the learning rate schedule.

Reuse, Don't Retrain: A Recipe for Continued Pretraining of Language Models, Parmar et al., 2024

CPT – Key Ideas Summary

Training Recipe

Model Recipe:

Learning rate schedule
Data curriculum

Jointly training CPT and IT have been shown to be effective

Seed Data

Data Mixture: Wide representative and filtering is needed

Data Budget:

New Knowledge ~ 5 million Prevent Forgetting ~ 5 million

* Filtering can be complicated and involved different components (e.g., decontamination..).

Instruction Tuning

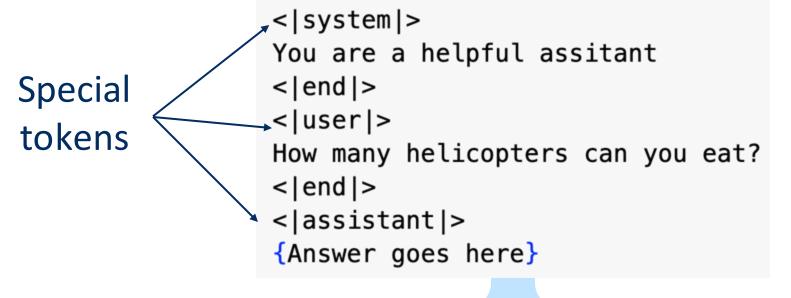
IT – Role

Chat Style Adaptation

Adapt base model to **specific style of input** for chat interactions.

Chat Template Adaptation

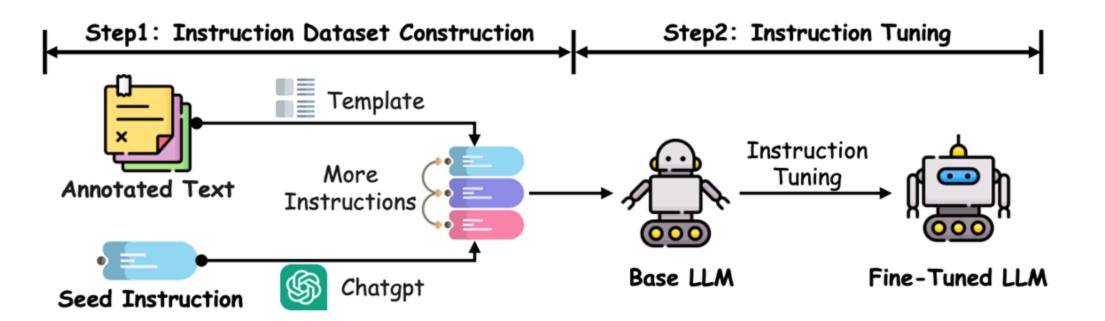
Ability to include system prompts, multi-turn dialogues, and other chat templates.



System prompt

Multi-turn dialogue

IT – Example Workflow



A SURVEY ON POST-TRAINING OF LARGE LANGUAGE MODELS, Tie et al., 2025

IT – Example Data

Chat Format
Special Label Masking
Packing



IT – Key Considerations

Training Recipe

Data Recipe:

Supervised data is expensive, how to synthesize more data?

Model Recipe:

How should the loss and masking different from CPT?

Training Workflow: how to connect with other methods

Seed Data

Data Source: Where to get the data?

Data Mixture: What should be included in the

IT data?

Data Budget: How many data we need?

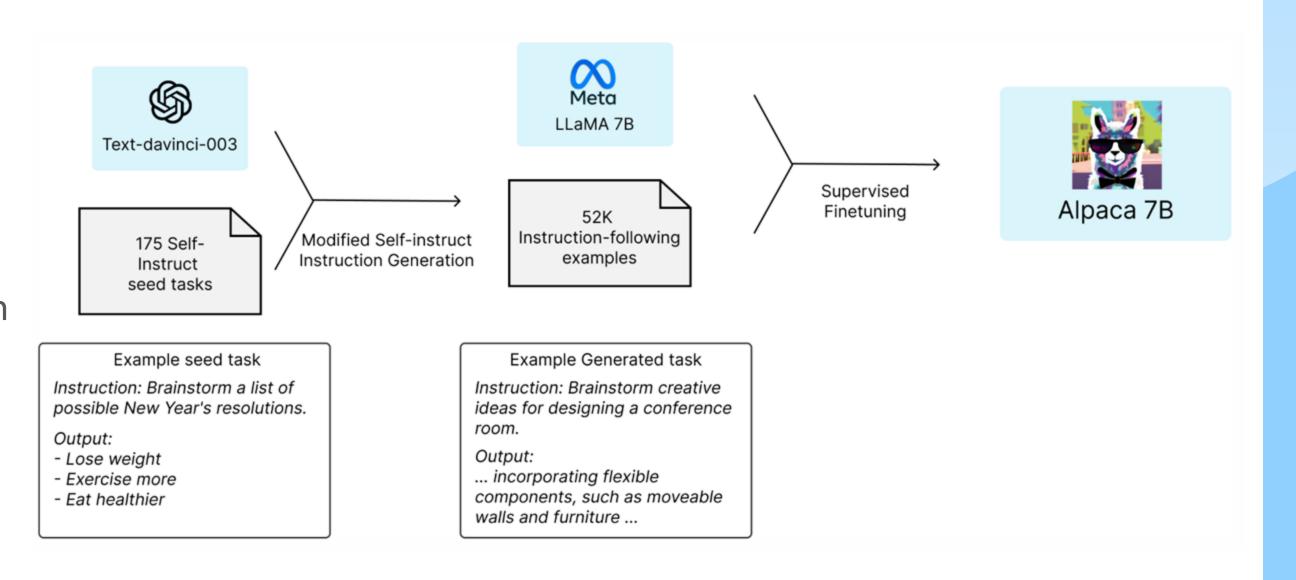
Self-instruct / Synthetic data

Seed: N high-quality (often human) prompts

Ask a strong LLM: Create a modified version of these instructions

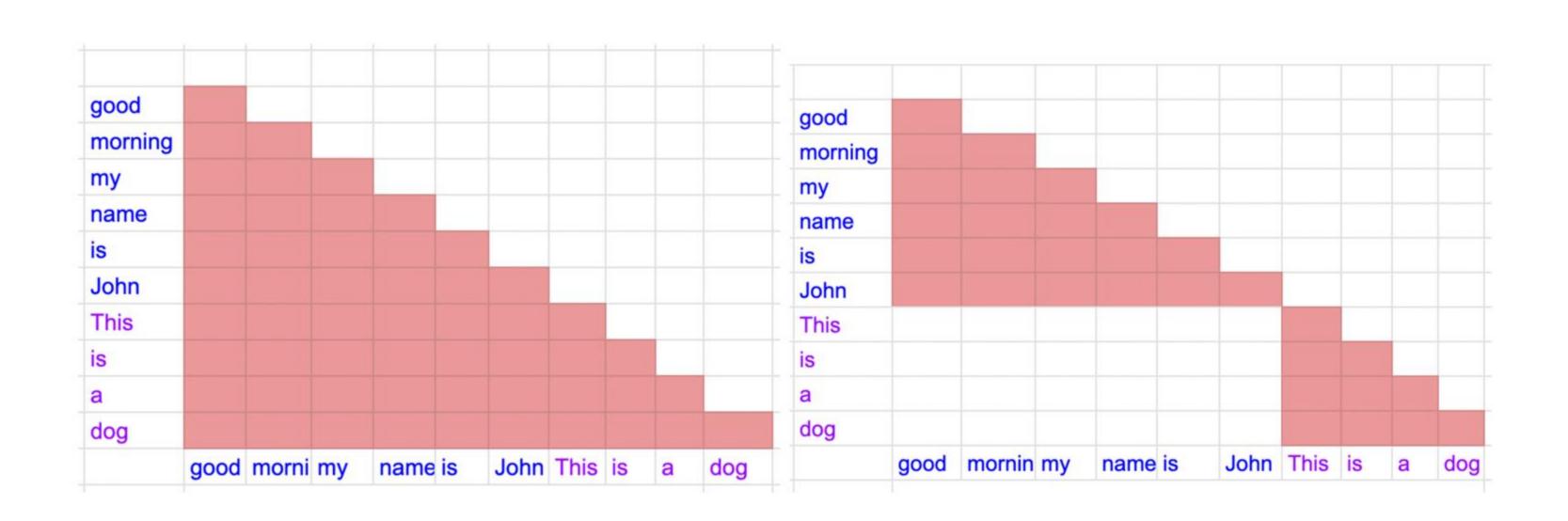
Generate completions with another (or same) strong LLM.

Results: easily 10x more synthetic training data



Alpaca: A Strong, Replicable Instruction-Following Model, Taori et al., 2023 SELF-INSTRUCT: Aligning Language Models with Self-Generated Instructions, Wang et al., 2022

Packing and Label Masking

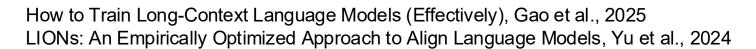


Packing and Label Masking

Disabling cross-document attention. Ding et al. (2024a) show that masking out attention across document boundaries improve model performance and this was also used during Llama-3 pre-training (Dubey et al., 2024). In §B.2, we show that disabling cross-document attention in continued training benefits both the short and long-context performance. Disabling cross-document attention can also result in higher training throughput, which we describe in more detail in §A.3.

Papers show that packing is helpful

Packing Packing optimizes the training efficiency by grouping sequences of varying lengths into a single long sequence without requiring any padding. This technique, commonly used in LLM pre-training, is now also utilized in instruction-based supervised fine-tuning, as implemented by models like Zephyr (Tunstall et al., 2023b)⁴.



salesforce

Packing and Label Masking

Masking the tokens of the instruction by setting the token labels of the instructions to -100

Below is an instruction that describes a task. Write a response that appropriately completes the request.

Instruction:
Rewrite the following sentence using passive voice.

Input:

The team achieved great results.

Don't mask instructions

Response: Great results were achieved by the team.

Below is an instruction that describes a task. Write a response that appropriately completes the request.

Instruction: ewrite the following sentence using passive voice.

Mask prompt template plus instruction & input

....

The team achieved great results.

Response: Great results were achieved by the team.

Below is an instruction that describes a task. Write a response that appropriately completes the request.

Instruction:
Rewrite the following sentence using passive voice.

Mask only the prompt template

Input:
The team achieved great results.

Response:

Input:

Great results were achieved by the team.

https://www.linkedin.com/pulse/llm-research-insights-instruction-masking-new-lora-raschka-phd-7p1oc

Packing and Label Masking

RQ1: What is the role of DAPT and SFT in post-training?

- DAPT uses next-token prediction, while SFT needs instruction masking added. §5.1
- Both DAPT and SFT contribute to improvements. §5.2
- Joint training with DAPT and SFT yields better results than sequential training. §5.3

Papers show that label masking is helpful

Demystifying Domain-adaptive Post-training for Financial LLMs, Ke et al., 2025 LIONs: An Empirically Optimized Approach to Align Language Models, Yu et al., 2024

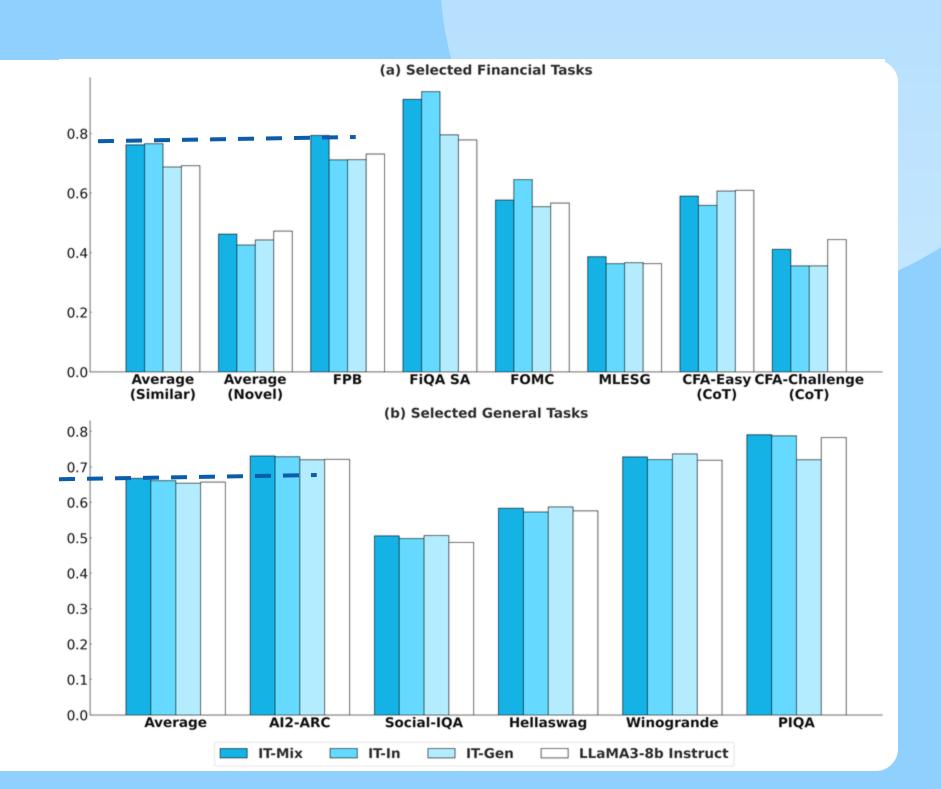
Loss Masking The standard language model training computes loss across all tokens in a sequence. Loss masking, however, ignores loss computation on tokens that are not output tokens like user instructions. It prevents the model from learning irrelevant information, alleviating catastrophic forgetting and overfitting.

salesforce

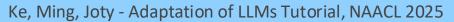
Task Generalization

Forgetting is less a problem

Task generalization is the main issue.



Demystifying Domain-adaptive Post-training for Financial LLMs, Ke et al., 2025

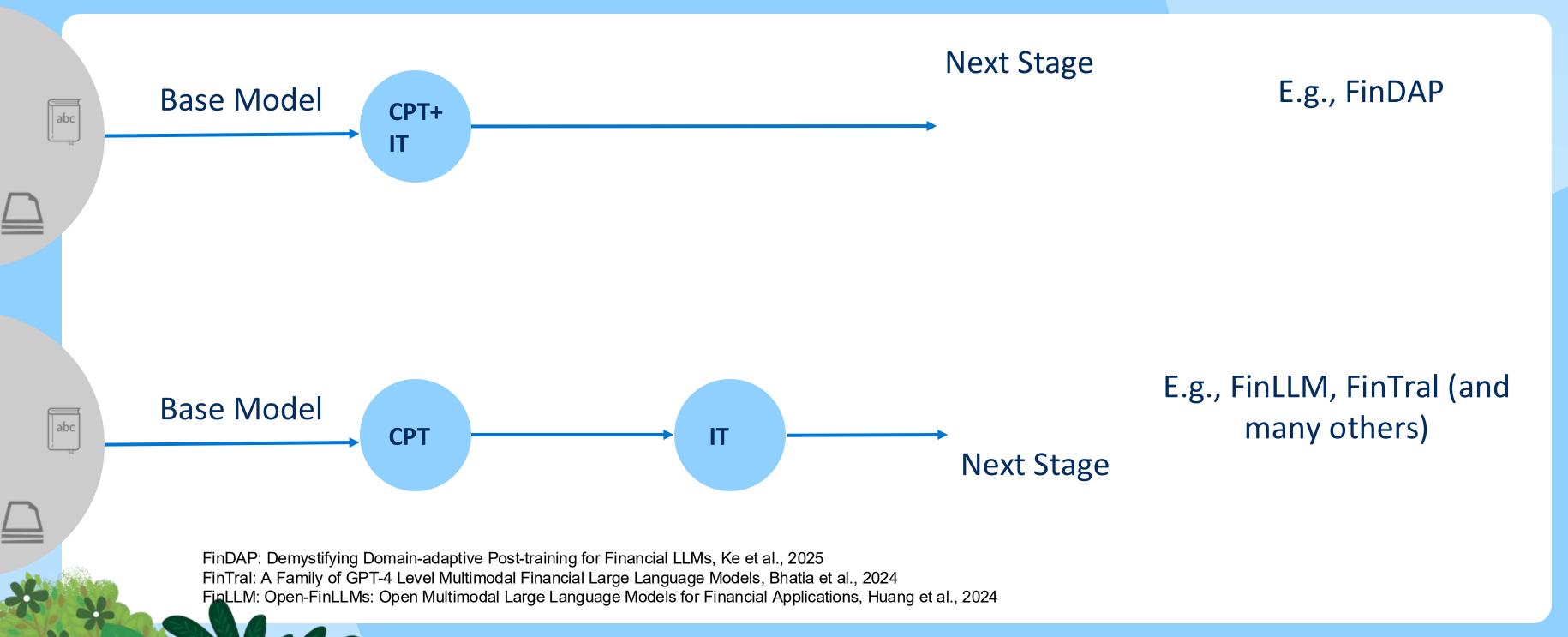


Task Generalization

A wide variety of representative task to promote the task generalization

Capability	Domain	Task	IT Dataset	Size	Reference
Tasks	Finance	Relation Cls.	FingptFinred	27,600	Sharma et al. (2022)
		NER	FingptNERCls	13,500	Yang et al. (2023)
			FingptNER	511	Alvarado et al. (2015)
		Headline Cls.	FingptHeadline	82,200	Sinha et al. (2020)
		Sentiment Cls.	SentimentCls	47,600	Yang et al. (2023)
			SentimentTra	76,800	Yang et al. (2023)
		Summariz.	TradeTheEvent	258,000	Zhou et al. (2021)
IF/Chat	General	IF/Chat	SelfInstruct	82,000	Wang et al. (2022)
			SlimOrca	518,000	Lian et al. (2023)
			UltraChat	774,000	Ding et al. (2023)
			ShareGPT	100,000	Link
	Finance	QA	FinanceInstruct	178,000	Link
			FingptConvfinqa	8,890	Chen et al. (2022)
			FlareFinqa	6,250	Chen et al. (2021)
			FlareFiqa	17,100	Yang et al. (2023)
Reasoning	Math	QA	OrcaMath	200,000	Mitra et al. (2024)
			MetaMathQA	395000	Yu et al. (2023)
			MathInstruct	262,000	Yue et al. (2023)
	Code	QA	MagicodeInstruct	111,000	Luo et al. (2023)
	Finance	CFA Exam	Exercise	2,950	-
Total				3,161,401	

Training Workflow



IT – Key Ideas Summary

Training Recipe

Data Recipe:

Synthetic data (e.g., self-instruct)

Model Recipe:

Packing and Loss Mask
Training Workflow (e.g., CPT → IT, CPT+IT)

Seed Data

Data Mixture: A wide variety of representative to promote task generalization

Data Budget ~ 1 Million

Synthetic data = text generated by LLM

Supervised Preference Learning

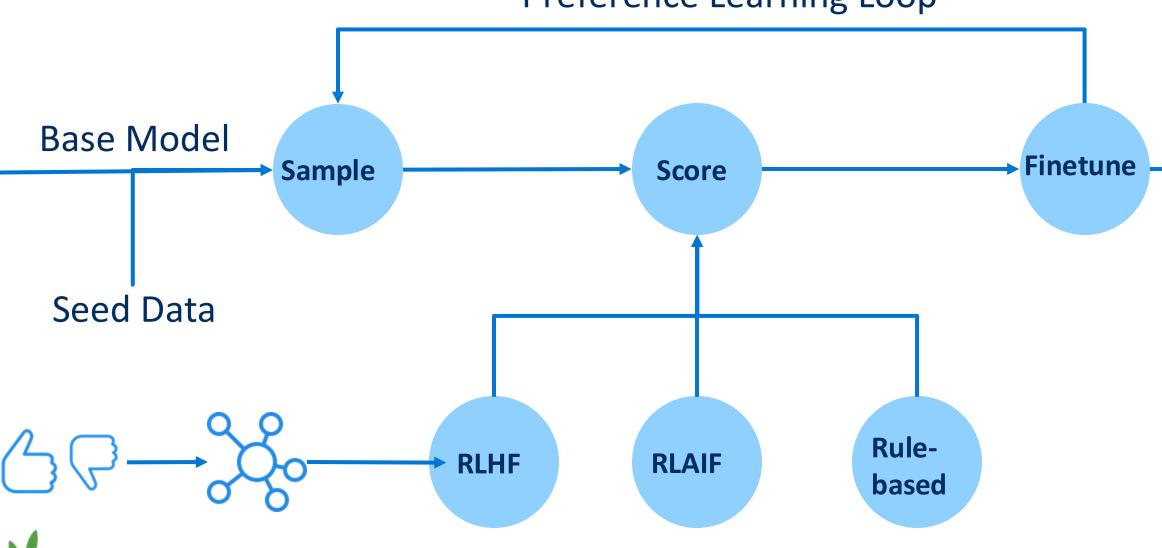
SPL - Role

Style and Chat

Stronger training influence for style and chat capability

More Capabilities

Continue building capabilities from instruction-tuned model, e.g., reasoning



SPL – Key Considerations

Training Recipe

Data Recipe: e.g., How to construct

preference

Model Recipe:

Algorithm: How to optimize the preference reward?

Training Workflow: how to connect with other methods

Seed Data

Data Source: Where to get the data?

Data Mixture: What should be included in the

PL data?

Data Budget: How many data we need?

DPO - Goal

$$\max_{\pi_{\theta}} \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_{\theta}(y|x)} \left[r_{\phi}(x, y) \right] - \beta \mathbb{D}_{\text{KL}} \left[\pi_{\theta}(y \mid x) \mid | \pi_{\text{ref}}(y \mid x) \right]$$

Optimize "reward" inspired by human preferences

Constraint the model to not trust the reward too much (preferences are hard to model)

Main Questions:

- 1. How to implement the reward?
- 2. How to optimize the reward?

DPO - Preference / Reward modeling

Chosen Completion

Scores from optimal reward model

Prompt

$$p^*(y_1 \succ y_2 \mid x) = \frac{\exp(r^*(x, y_1))}{\exp(r^*(x, y_1)) + \exp(r^*(x, y_2))}.$$

Rejected Completion

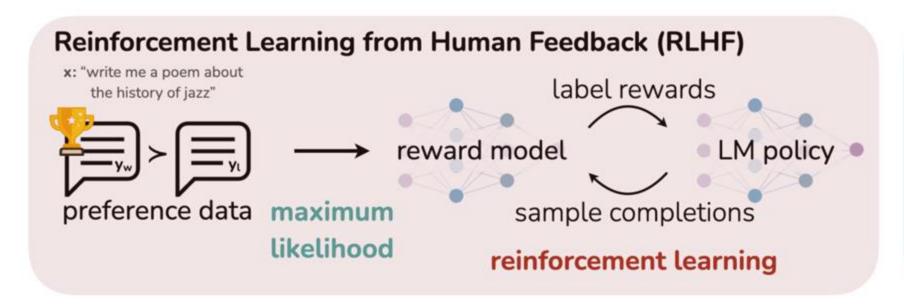
Key Idea: Probability ∝ Reward

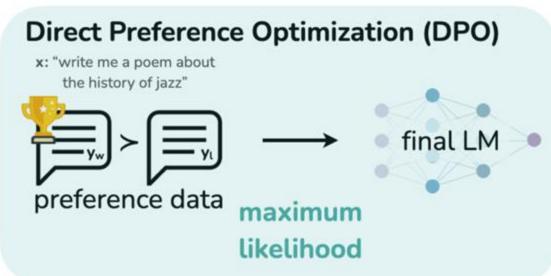
Obtaining point-wise Scalar reward of how good response is hard, but pairwise preference is easier and works!

DPO

If we just use gradient ascent on the equation

With some math, we get: Direct Preference Optimization (DPO)





Direct Preference Optimization: Your Language Model is Secretly a Reward Model, Rafailov et al., 2023

RLAIF

Human Preferences (RLHF) vs. LLM-as-a-judge (RLAIF)

Both source of preference data are used extensively

In Frontier Labs:

Human data used extensively as foundation

Synthetic data used to enhance behaviors (e.g., Constitutional AI)

In Open Research:

Synthetic data dominates (due to price)

Constitutional AI: Harmlessness from AI Feedbackl, Bai et al., 2022

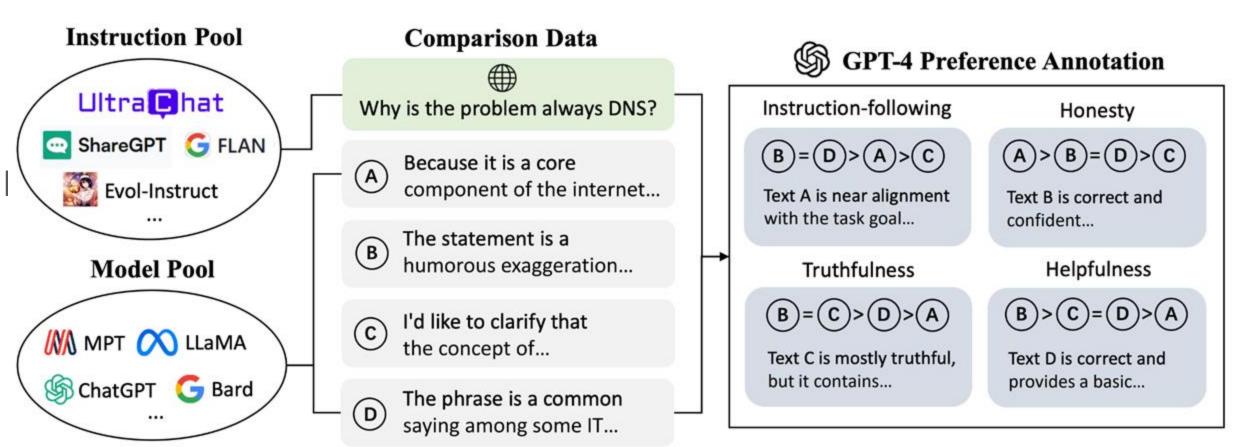
A Leading Synthetic Preference Method–UltraFeedback

Key aspects

Diverse model pool for completions

Diverse prompt pool

On-policy generations from locheckpoints



UltraFeedback: Boosting Language Models with Scaled Al Feedback, Cui et al., 2024

Representative work with DPO – Zephyr, TuLU 70B....

First model makes a splash with DPO

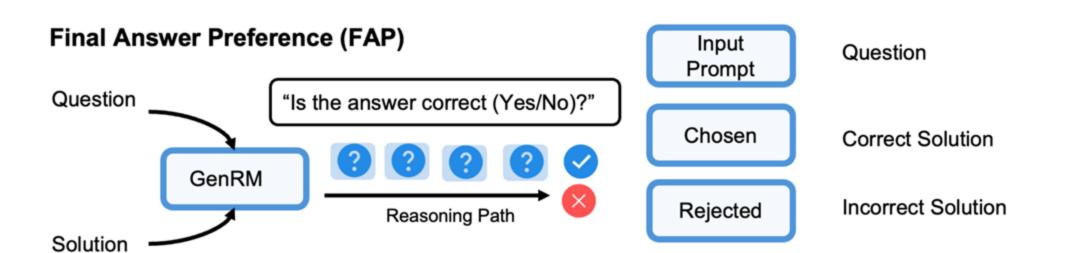
Fine-tune from Mistral 7b with UltraFeedback Datasets

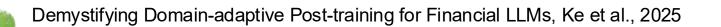
Low learning rate (~5E-7) is good for DPO

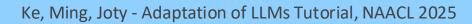
Zephyr: Direct Distillation of LM Alignment, Tunstall, et al., 2023

Synthesize Preference Data Focused on Intermediate Preference

Final outcome preference





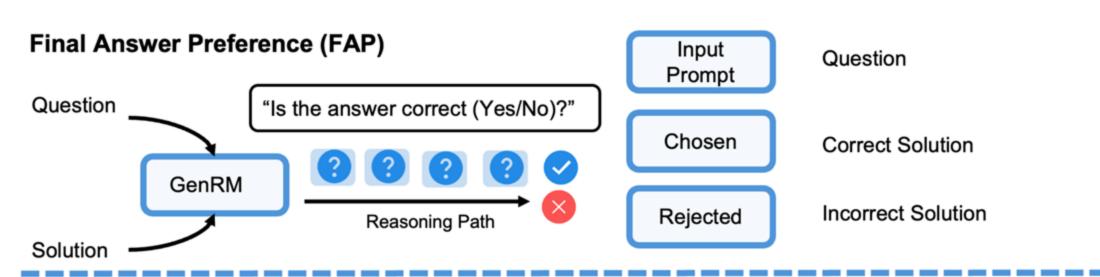


Synthesize Preference Data Focused on Intermediate Preference

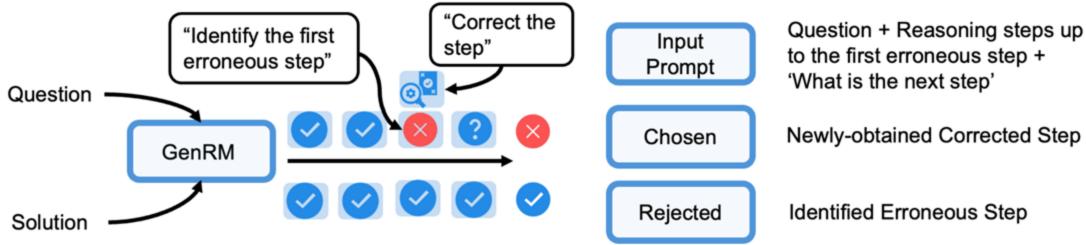
Final outcome preference

Intermediate outcome preference

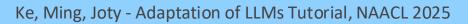
Identify and rectify the first erroneo step



Stepwise Corrective Preference (SCP)



Demystifying Domain-adaptive Post-training for Financial LLMs, Ke et al., 2025



SPL – Key Ideas Summary

Training Recipe

Data Recipe: Preference construction is often from diverse source (e.g., instruction pool, model pool) and cover fine-grained information (e.g., intermediate preference)

Model Recipe:

Algorithm: most popular: DPO

Training Workflow: usually after CPT and

П

Seed Data

Data Source: often partial overlapping with IT

Data Mixture: Can be large scale (e.g., Math, Logic, Code, Science, Reasoning..)

Data Budget: ~ 1 million

Coffee Break (30 Min)

Reinforcement Learning

RL – Role

Beyond Human/Al Preference

RL as a training objective, learning from experience of interacting of the environment

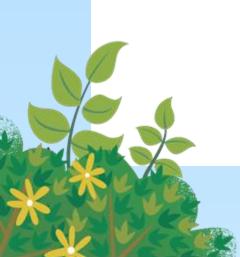
Recently show high-effectiveness

Learn from Mistakes

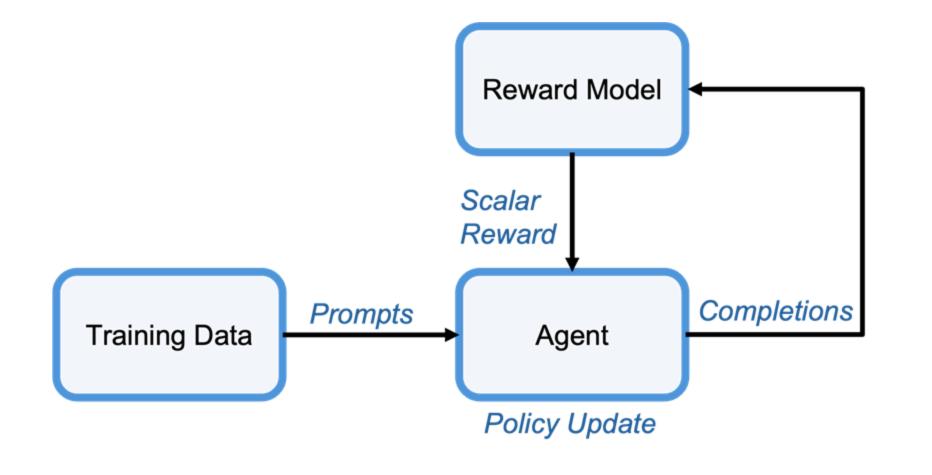
RL methods naturally see both correct and a wide range of incorrect solutions.

This means they can:

improve targeted capabilities without degradation on other out-of-domain capabilities



RL – Example Workflow



RL – Key Considerations

Training Recipe

Model Recipe:

Algorithm: How to optimize the reward effectively and efficiently?

Training Workflow: how to connect with other methods

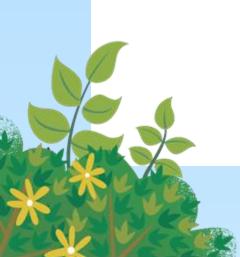
Seed Data

Data Source: Where to get the data?

Data Mixture: What should be included in the

RL data?

Data Budget: How many data we need?



From DPO to RL

$$\max_{\pi_{\theta}} \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_{\theta}(y|x)} \left[r_{\phi}(x, y) \right] - \beta \mathbb{D}_{\text{KL}} \left[\pi_{\theta}(y \mid x) \mid | \pi_{\text{ref}}(y \mid x) \right]$$

Optimize "reward" inspired by human preferences

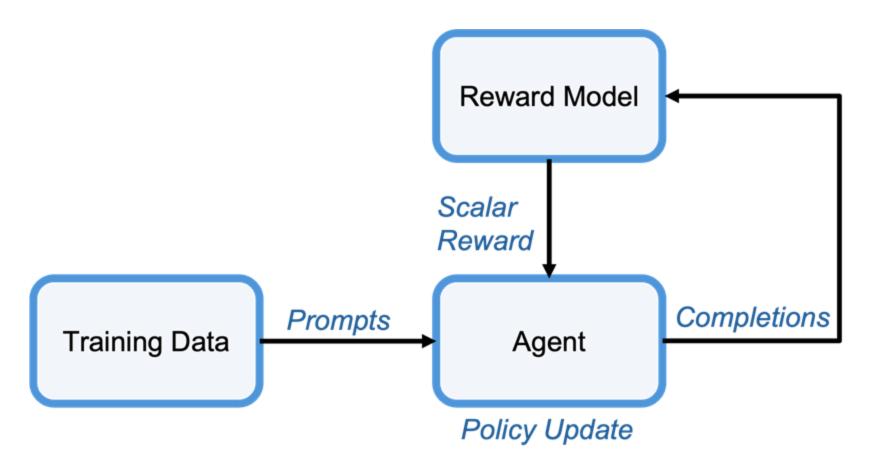
Constraint the model to not trust the reward too much (preferences are hard to model)

Main Questions:

- 1. How to implement the reward?
- 2. How to optimize the reward?

From DPO to RL

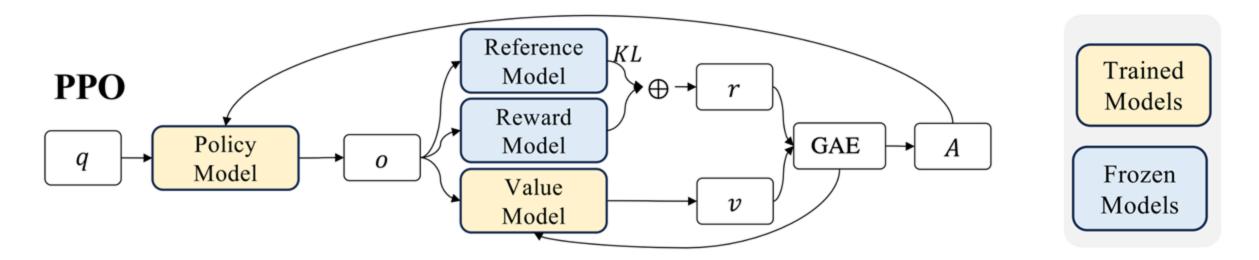
What if we choose not to use pairwise preference but still rely on scalar reward



PPO

One popular method is PPO

(effective but expensive: 4 copies of model)



Proximal Policy Optimization Algorithms

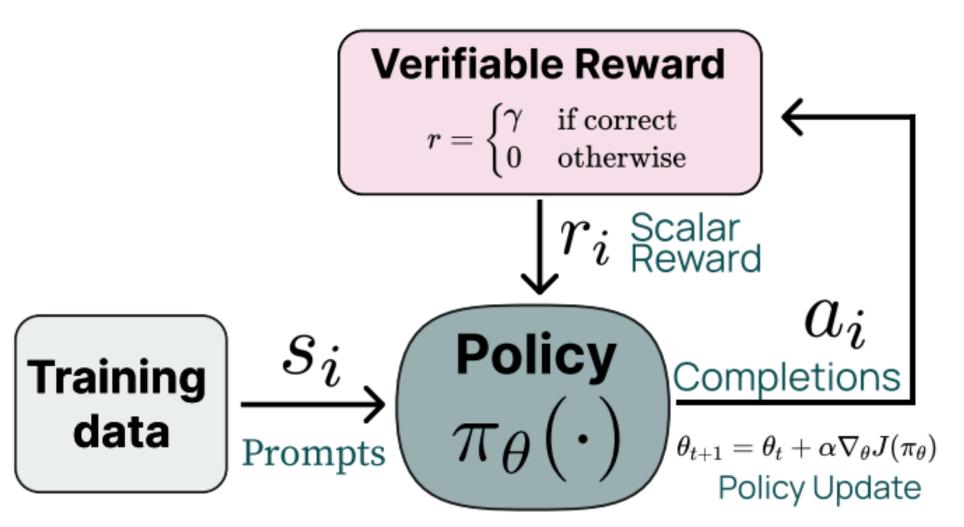
John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov OpenAI {joschu, filip, prafulla, alec, oleg}@openai.com

salesforce

RL with Verifiable Reward (RLVR)

Since the scalar reward is hard to get, one method is to use verifiable reward (e.g., math)

Reward model is also eliminated

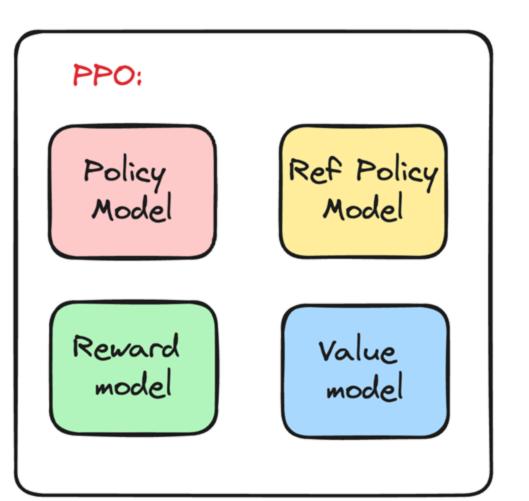


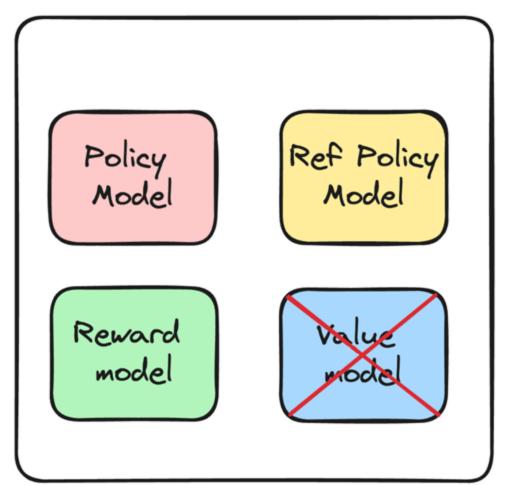
Tülu 3: Pushing Frontiers in Open Language Model Post-Training, Lambert et al., 2025

Can We Get Rid of the Value Model?

But this is still limited, can we get rid of the value model?

The answer to this question leads to many RL algorithm variants for LLM





https://huggingface.co/blog/putting_rl_back_in_rlhf_with_rloo

Can We Get Rid of the Value Model?

Core Trick

Value Model = a model (LLM) that estimates the baseline expected return at each time step (token), so we can measure how much better or worse the actual outcome was compared to this expectation (this difference is called advantage).

Can We Get Rid of the Value Model?

Core Trick

But, do we need we really need to figure out which **token** made the reader happy? Can we just ask "Is the answer good?" If yes \rightarrow reinforce. No need to slice the blame

Key Innovation:

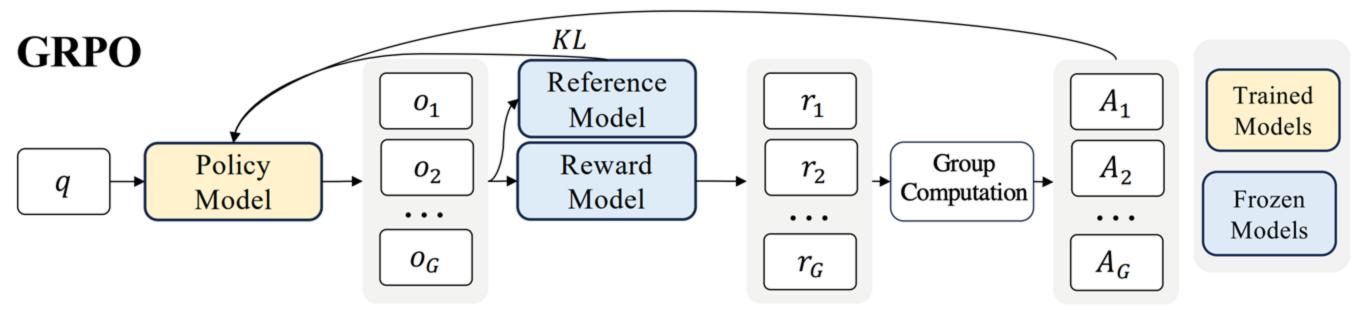
Value attributed to each token → group of tokens (e.g., full response)

Now the value is directly tie to the reward, no value model required to estimate expected return at each time step.

GRPO

Action = full response

Advantage = Preference ranking across a group



DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models

Another RL Variant: RLOO

Action = full response

Advantage = Leave-One-Out reward baseline

$$A = rac{R(x,y)}{n-1} - rac{1}{n-1} \sum_{j
eq i} R(x,y_j)$$

Reward for the current response

All other responses in the batch

Back to Basics: Revisiting REINFORCE Style Optimization for Learning from Human Feedback in LLMs

Arash Ahmadian
Cohere For AI

 $\begin{array}{c} \textbf{Chris Cremer} \\ \textit{Cohere} \end{array}$

Matthias Gallé
Cohere

RL – Key Ideas Summary

Training Recipe

Model Recipe:

Algorithm: Value model is eliminated by taking group of token as action and define advantage based on those group of tokens (various across RL algorithms. It is still an active research topic)

Training Workflow: usually serve as the last method in the workflow (e.g., after CPT, IT, and PL)

Seed Data

Data Source: often partial overlapping with IT

Data Mixture: Can be large scale (e.g., Math, Logic, Code, Science, Reasoning..)

Data Budget ~ 10 thousand (recent research shows that even a small amount, even just 1-shot can make a different. Still actively research)

